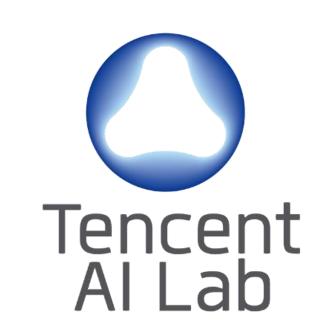


Topic-Aware Neural Keyphrase Generation for Social Media Language



Yue Wang¹, Jing Li², Hou Pong Chan¹, Irwin King¹, Michael R. Lyu¹, Shuming Shi²
The Chinese University of Hong Kong¹ Tencent AI Lab²

¹{yuewang, hpchan, king, lyu}@cse.cuhk.edu.hk, ²{ameliajli, shumingshi}@tencent.com

Introduction

- Keyphrase prediction in social media: distill salient information from massive posts
- Challenges:
 - Social media language is noisy and informal (data sparsity)
 - Prior work only extract keyphrases from the source post

Source post with keyphrase "super bowl":

[S]: Somewhere, a wife that is not paying attention to the *game*, says "I want the *team* in *yellow pants* to *win*."

Relevant tweets:

 $[T_1]$: I been a *steelers fan* way before *black* & *yellow* and this *super bowl*!

 $[T_2]$: I will bet you the *team* with *yellow pants wins*.

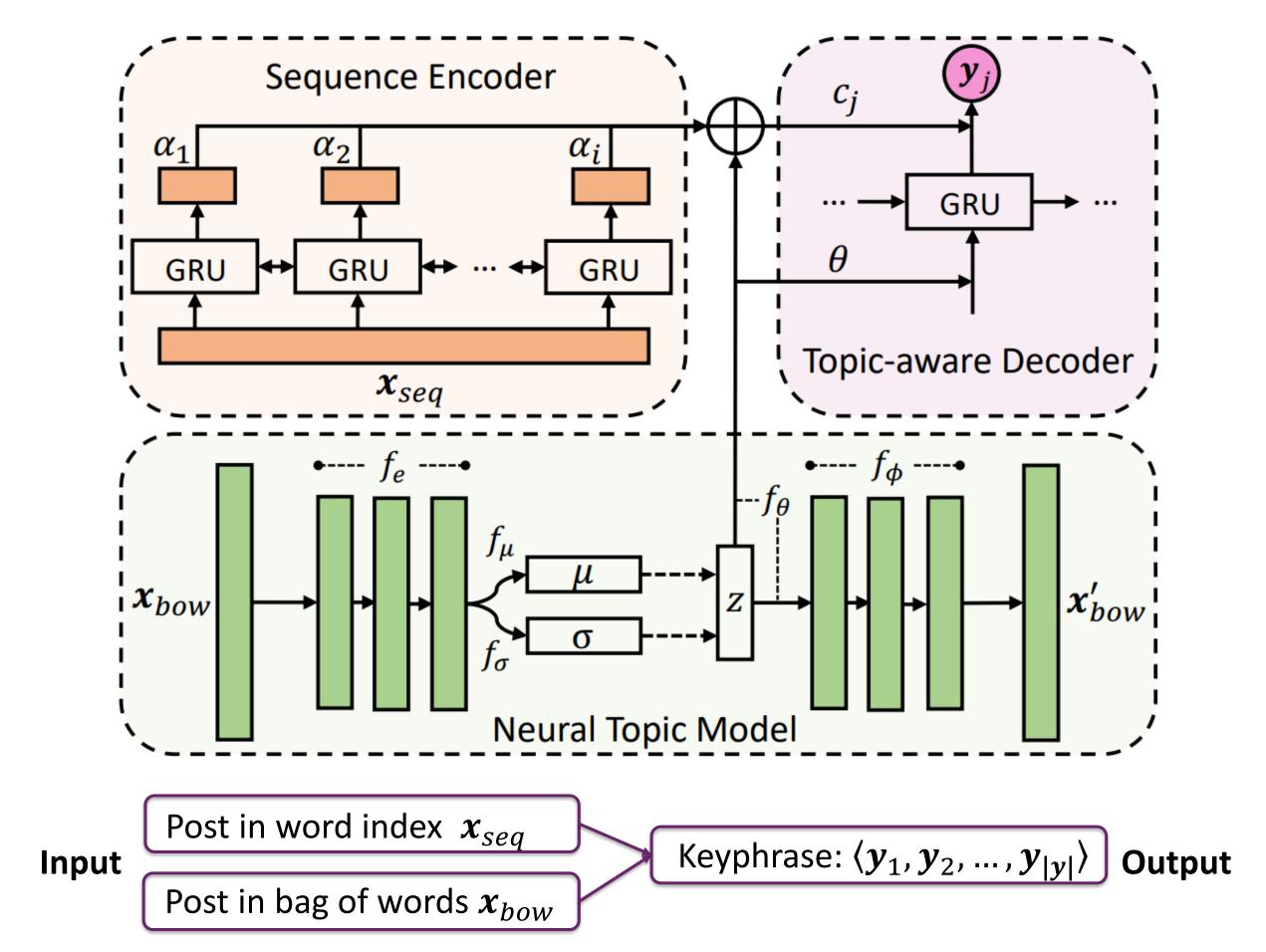
[T_3]: Wiz Khalifa song 'black and yellow" to spur the pittsburgh steelers and Lil Wayne is to sing "green and yellow" for the packers.

Our solution: topic-aware keyphrase generation

- **Topic-aware**: latent topics learned from the corpus can alleviate the data sparsity
- Sequence generation: create new keyphrases

Our Approach

Overall framework

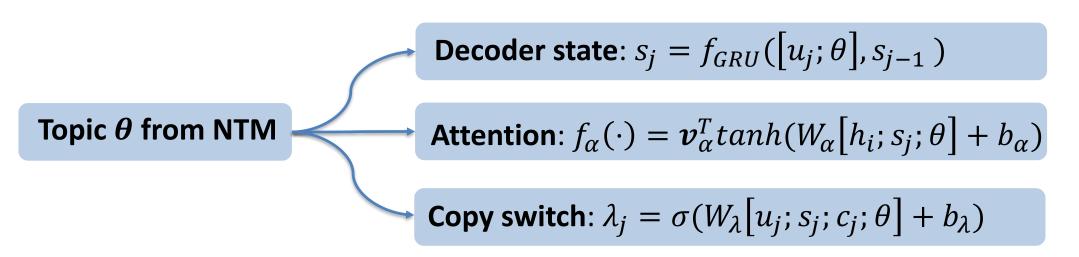


Neural topic model (NTM)

BoW Encoder	BoW Decoder		
Prior latent variables	• Draw latent variable $z \sim N(\mu, \sigma^2)$		
$\blacksquare \boldsymbol{\mu} = f_{\mu} \big(f_e(\boldsymbol{x}_{bow}) \big)$	■ Topic mixture $\theta = softmax(f_{\theta}(\mathbf{z}))$		
$\bullet \log \boldsymbol{\sigma} = f_{\sigma}(f_{e}(\boldsymbol{x}_{bow}))$	For each word $w \in x$:		
	• Draw word $w \sim softmax(f_{\varphi}(\theta))$		

Keyphrase generation (KG) model

- Base model: standard seq2seq with copy mechanism
- Advanced: topic-aware sequence decoder



Joint learning topics and keyphrases

$$\mathcal{L}_{NTM} = D_{KL}(p(\mathbf{z}) || q(\mathbf{z} | \mathbf{x})) - \mathbb{E}_{q(\mathbf{z} | \mathbf{x})}[p(\mathbf{x} | \mathbf{z})],$$

$$\mathcal{L}_{KG} = -\sum_{n=1}^{N} \log(Pr(\mathbf{y}_{n} | \mathbf{x}_{n}, \theta_{n})),$$

$$\mathcal{L} = \mathcal{L}_{NTM} + \gamma \cdot \mathcal{L}_{KG}$$
End-to-end training

Data Description

Source posts	# of	Avg len	# of KP	Source
Source posts	posts	per post	per post	vocab
Twitter	44,113	19.52	1.13	34,010
Weibo	46,296	33.07	1.06	98,310
StackExchange	49,447	87.94	2.43	99,775
Torgot KD	KD	Avg len	% of	Target
Target KP	KP	Avg len per KP	% of abs KP	Target vocab
Target KP Twitter	KP 4,347	C		C
	1 1	per KP	abs KP	vocab

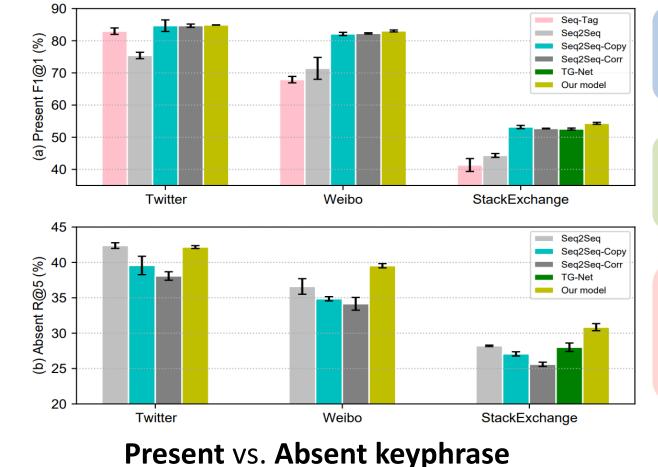
- 80% training
- 10% validation
- 10% test

High absent rate

Experiment Results

Main results

Model	Twitter			Weibo			StackExchange		
Model	F1@1	F1@3	MAP	F1@1	F1@3	MAP	F1@3	F1@5	MAP
Baselines									
MAJORITY	9.36	11.85	15.22	4.16	3.31	5.47	1.79	1.89	1.59
TF-IDF	1.16	1.14	1.89	1.90	1.51	2.46	13.50	12.74	12.61
TEXTRANK	1.73	1.94	1.89	0.18	0.49	0.57	6.03	8.28	4.76
KEA	0.50	0.56	0.50	0.20	0.20	0.20	15.80	15.23	14.25
State of the arts									
SEQ-TAG	22.79 ± 0.3	$12.27{\scriptstyle\pm0.2}$	$22.44{\scriptstyle\pm0.3}$	16.34±0.2	$8.99{\scriptstyle\pm0.1}$	$16.53{\scriptstyle\pm0.3}$	17.58±1.6	$12.82{\scriptstyle\pm1.2}$	$19.03{\scriptstyle\pm1.3}$
SEQ2SEQ	34.10±0.5	26.01 ± 0.3	41.11 ± 0.3	28.17±1.7	$20.59{\scriptstyle\pm0.9}$	$34.19{\scriptstyle\pm1.7}$	22.99 ± 0.3	$20.65{\scriptstyle\pm0.2}$	$23.95{\scriptstyle\pm0.3}$
SEQ2SEQ-COPY	36.60±1.1	$\underline{26.79} {\pm 0.5}$	$\underline{43.12}{\scriptstyle\pm1.2}$	32.01 ± 0.3	$\underline{22.69}{\scriptstyle\pm0.2}$	$\underline{38.01}{\scriptstyle\pm0.1}$	31.53±0.1	$27.41{\scriptstyle\pm0.2}$	$33.45{\scriptstyle\pm0.1}$
SEQ2SEQ-CORR	34.97 ± 0.8	$26.13{\scriptstyle\pm0.4}$	$41.64{\scriptstyle\pm0.5}$	31.64±0.7	$22.24{\scriptstyle\pm0.5}$	$37.47{\scriptstyle\pm0.8}$	30.89 ± 0.3	$26.97{\scriptstyle\pm0.2}$	$32.87{\scriptstyle\pm0.6}$
(I			0000		
TG-NET	-	-	-	-	-	-	32.02 ± 0.3	27.84 ± 0.3	34.05 ± 0.4



- Social media keyphrase prediction is challenging
- Seq2seq-based keyphrase generation models are effective
- Latent topics are consistently helpful for indicating keyphrases, especially for absent ones

Topic modeling

Datasets	Twitter	StackExchange
LDA	41.12	35.13
BTM	43.12	43.52
NTM	43.82	43.04
Our model	46.28	45.12
	_	

(a) Topic coherence (C_V scores)

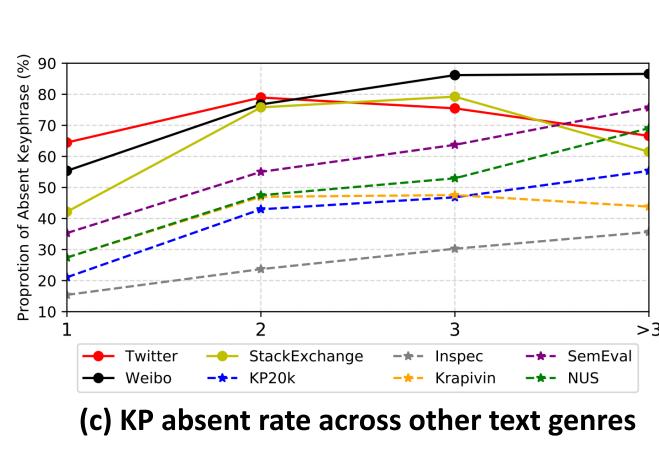
LDA	bowl super quote steeler jan watching		
LDA	egypt playing glee girl		
BTM	bowl super anthem national christina		
DIWI	aguilera fail <u>word</u> brand playing		
NTM	super bowl eye protester winning		
1 1 1 1 1 1 1 1 1	watch halftime ship sport mena		
Our	bowl super yellow green packer steeler		
model	nom commercial win winner		

(b) Sample topics for "super bowl"

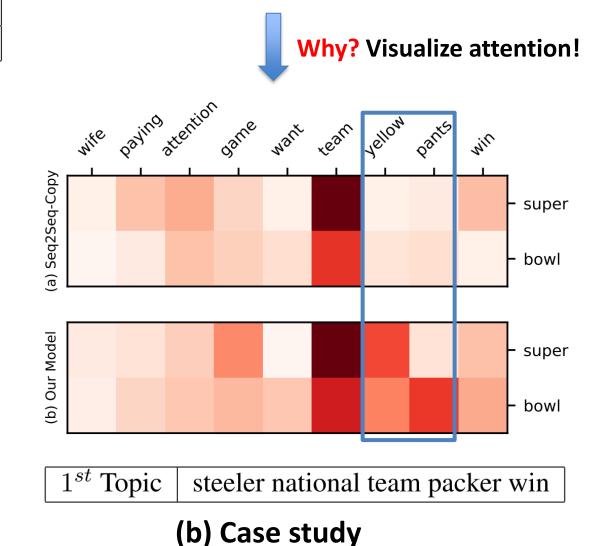
Further discussions

Model	Twitter	Weibo	SE
SEQ2SEQ-COPY	36.60	32.01	31.53
Our model (separate train)	36.75	32.75	31.78
Our model (w/o topic-attn)	37.24	32.42	32.34
Our model (w/o topic-state)	37.44	33.48	31.98
Our full model	38.49	34.99	33.41

(a) Ablation study



For tweet S, our model correctly predicts "super bowl", while the seq2seq-copy model without topic guidance wrongly predicts "team follow back"



Conclusion & Future Work

- We propose the first topic-aware keyphrase generation model that allows end-to-end training with latent topics
- We newly construct three social media datasets for this task
- Extensive experiments demonstrate the effectiveness of our proposed model for social media language
- Explore how to explicitly leverage the topic-word information
- Extend to other text generation tasks

Find our code & data

Tencent Al Lab