
CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder 
Models for Code Understanding and Generation

¹Salesforce Research Asia         ²Nanyang Technological University

Yue Wang¹, Weishi Wang¹², Shafiq Joty¹², Steven Hoi¹

1



Inspired by the success of pre-trained language models in NLP, the recent years witness the 
surge of pre-trained programming language models, e.g., CodeBERT and CodeGPT

However, existing programming language models have two shortcomings:

● Most current methods either rely on an encoder-only (or decoder-only) pre-training that is 
suboptimal for generation (resp. understanding) tasks

● They often process the code snippet in the same way as natural language (NL), neglecting 
the special characteristics of programming language (PL) such as code token types

Motivation

Can we leverage more 
code-specific knowledge?

Can we propose a unified 
model to support all tasks 
of both types?

2



● Present CodeT5, a novel pre-trained encoder-decoder model that supports both 
understanding and generation tasks and also allows for multi-task learning

● Propose an identifier-aware denoising objective to fuse the code token type information and 
a bimodal dual generation task to learn a better NL-PL alignment 

● CodeT5 yields new state-of-the-art results on fourteen sub-tasks in CodeXGLUE benchmark

Contributions

3



Pre-training Tasks of CodeT5
Overview

4



S1: Identifier-aware denoising objective

● Masked Span Prediction (MSP)
● Identifier Tagging (IT)
● Masked Identifier Prediction (MIP)

S2: Bimodal Dual Generation

● Dual conversion between NL and PL

Pre-training Tasks of CodeT5

Bimodal input or 
unimodal input

Bimodal input only

Input x =  ([CLS], w₁, ..., wₘ, [SEP], c₁, ..., cₘ, 
[SEP])

Two-stage pre-training

5

NL words PL code tokens



S1: Identifier-aware denoising objective

● Masked Span Prediction (MSP)
● Identifier Tagging (IT)
● Masked Identifier Prediction (MIP)

Pre-training Tasks of CodeT5
Two-stage pre-training

Similar to default T5 objective, but differs in

● Whole word masking
● Denoising on NL-PL bimodal input

6



S1: Identifier-aware denoising objective

● Masked Span Prediction (MSP)
● Identifier Tagging (IT)

○ Syntax highlight: to distinguish which 
code tokens are identifiers

● Masked Identifier Prediction (MIP)

Pre-training Tasks of CodeT5
Two-stage pre-training

7



S1: Identifier-aware denoising objective

● Masked Span Prediction (MSP)
● Identifier Tagging (IT)
● Masked Identifier Prediction (MIP)

○ Deobfuscation: a more challenging task 
that requires semantics understanding

Pre-training Tasks of CodeT5
Two-stage pre-training

8



S2: Bimodal Dual Generation

● Dual conversion either from NL to PL or from PL to NL
○ Leverage the NL-PL pairs (function and its comments) naturally available in source code to 

learn a better cross-modal alignment

Pre-training Tasks of CodeT5
Two-stage pre-training

9



Pre-training dataset

● Size: 8.35M (3.16M bimodal+5.19M unimodal)
○ 6 PLs from CodeSearchNet
○ 2 PLs (C/C#) from BigQuery

● Use tree-sitter to parse the function into an 
abstract syntax tree (AST) and extract identifiers

● Identifier rate: 19.32%~32.08%

Pre-training Dataset & Tokenizer

10

Code-specific tokenizer

● Build our own byte-level BPE tokenizer using our training data (vocabulary=32K)
● Default T5 tokenizer encodes some common code tokens (e.g., ‘{’ and ‘}’) into <unk>
● Ours reduce the tokenized code length (30%~45%) ⇒ accelerate training!



Task-specific transfer learning: fine-tune on each of tasks in CodeXGLUE benchmark

Fine-tuning on Downstream Tasks

11

Multi-task learning

● Employ a unified set of task control 
prompts, e.g., “Translate Python to C”

● Balanced sampling & allow to select 
different checkpoints for different tasks

Generation tasks
● Summarization (PL→ NL)
● Generation (NL→ PL)
● Refinement (buggy PL → correct PL)
● Translation (PL 1 → PL 2)

Understanding tasks
● Defect detection (PL → 0/1)
● Clone detection (PL 1 + PL 2 → 0/1)



Observations:

● Both CodeT5-small and CodeT5-base are much better than the SOTA PLBART
● Dual-gen benefits both NL↔PL tasks while multi-task only benefits the summarization task

NL↔PL: code summarization & generation
Experiment Results

12



Code translation (Java-C#)

● CodeT5-base is consistently better than 
PLBART while -small is comparable

● Both dual-gen and multi-task do not 
help, while dual-gen even hurts

Code refinement (Java small/medium)

● Exact match (EM) is more important
● CodeT5-small and -base achieve SOTA 

results, especially on the medium set
● Dual-gen still hurts while multi-task 

significantly boosts the performance 

PL→ PL: code translation & refinement
Experiment Results

13



Metric: accuracy for code defect detection and F1 
score for code clone detection

Observations:

● CodeT5 models yield much better accuracy on 
code defect detection and comparable F1 score 
on code clone detection

● Bimodal dual generation and multi-task 
learning do not help and even sometimes hurt 

Understanding tasks: code defect/clone detection
Experiment Results

14



Representative tasks: 

● Generation: PL → NL, NL→ PL, PL→ PL
● Understanding: defect detection

Observations:

● All components contribute to the better 
overall performance for all tasks

● Masked span prediction (MSP) is crucial 
for all generation tasks while masked 
identifier prediction (MIP) is more 
important for understanding tasks

Analyzing identifier-aware denoising objective
Ablation Study

15



● CodeT5 can generate semantically 
correct output with a better readability

● BLEU is not a perfect metric for 
evaluating code generation tasks

Case Study
Analyzing outputs of CodeT5

● CodeT5 can produce the correct code 
snippet while its variant without 
identifier information fails to do so

16



CodeT5 can be deployed to provide AI-powered coding assistance for software developers

● Text-to-code generation
● Code autocompletion
● Code summarization

How could CodeT5 disrupt software development?
Looking Forward

17



CodeT5 can be deployed to provide AI-powered coding assistance for software developers

● Text-to-code generation
● Code autocompletion
● Code summarization

How could CodeT5 disrupt software development?
Looking Forward

18



Conclusion

● Present CodeT5, the first code-aware pre-trained encoder-decoder model that yields 
state-of-the-art results on fourteen sub-tasks in CodeXGLUE benchmark

● A large-scale pre-trained programming language model with great potential to support 
a wide range of code intelligence applications in the software development lifecycle

● Code and models have been released at github.com/salesforce/CodeT5

Ethical considerations

Conclusion & Ethical Considerations

19

Dataset Bias Automation Bias Computation Cost Security Implications

https://github.com/salesforce/CodeT5


Find Out More:
Blog: blog.einstein.ai/codet5 
Paper: arxiv.org/abs/2109.00859 
Code and Models: github.com/salesforce/CodeT5 

20

https://blog.einstein.ai/codet5
https://arxiv.org/abs/2109.00859
https://github.com/salesforce/CodeT5

