
RAP-Gen: Retrieval-Augmented Patch Generation
with CodeT5 for Automatic Program Repair

¹Salesforce AI Research ²Nanyang Technological University

Weishi Wang*¹², Yue Wang*¹, Shafiq Joty¹², Steven Hoi¹ (* equal contribution)

1

Debugging has been one of the most time-consuming in software development. Automatic
Program Repair (APR) is crucial to improve developers’ productivity!

Motivation

In debugging, developers often search for similar bugs faced by others before (e.g., at
StackOverflow), and learn from how they fixed the bugs

2

● Prior Work
○ Search-based techniques: based on fix patterns mined from existing codebase

⇒ Limitation: require lots of efforts to handcraft various fix pattern mining strategies
○ Learning-based techniques: automate APR as a sequence-to-sequence generation task in a

pure data-driven manner with neural networks

⇒ Limitation: rely on a fixed set of parameters to model the complex search space of APR

● Our Work: we propose to ease the burden of neural APR systems by explicitly incorporating
the fix pattern with a Retrieval-Augmented Patch Generation framework (RAP-Gen)

○ It retrieves one relevant bug-fix pair in the existing codebase as the fix pattern

Motivation
Comparison with prior work

3

RAP-Gen Framework

4

RAP-Gen Components

Hybrid Patch Retriever

● How to construct the training data for DPR?
○ Leverage the bug-fix pairs in the codebase as the pair often shares similar identifiers

and functionalities
● Trained using an InfoNCE loss to contrast the positive pair with in-batch negatives

CodeT5 Patch Generator

● Adapt a code-aware encoder-decoder LLM CodeT5 as the foundation model
● Trained to generate the fix based on the bug and the top-1 retrieved bug-fix pair

○ Source input format:

5

Benchmarks
● TFix (snippet-level in JavaScript)

○ Coding errors validated by a static analyzer EsLint
● Code Refinement (function-level in Java)

○ Detected by checking if the commit message matches certain patterns
■ (“fix” or “solve”) and (“bug” or “issue” or “problem” or “error”)

● Defects4J (file-level in Java)
○ Validated by running against test cases

6

Research Questions

● RQ1: Comparative study with other APR models on TFix.
○ How does RAP-Gen perform to repair Linter-flagged JavaScript coding errors?

● RQ2: Analysis of RAP-Gen predictions on TFix.
○ How does RAP-Gen perform for different error types?
○ What fix operations does RAP-Gen adopt in repairing bugs?

● RQ3: Comparative study with other APR models on Code Refinement.
○ How does RAP-Gen perform to repair commit-related Java bugs?

● RQ4: Analysis of our hybrid patch retriever.
○ Can our hybrid patch retriever find relevant fix pattern to guide APR?

● RQ5: Comparative study with other APR models on Defects4J.
○ How does RAP-Gen perform to repair real Java bugs in open-source projects?

7

RQ1: Comparative Study on TFix

● RAP-Gen achieves the best performance
in both Exact Match (EM) and BLEU-4,
i.e. repairing 478+ bugs than T5-large

● Error removal: Correct if the error is
removed and no new error is introduced

● RAP-Gen achieves a much larger gain on
error removal than other metrics

● Error removal is aligned with EM and BLEU-4

8

RQ2: Analysis of RAP-Gen Predictions on TFix

9

12.5%

Insertion Replacement

Deletion

8.1%

47.9%

6.9%

8.2% 7.2%

9.2%

RAP-Gen outperforms T5-large in 40/52 error types

What fix operations are performed by
our RAP-Gen?

RQ3: Comparative Study on Code Refinement

● “Naive Copy” gives a high BLEU-4 score
but with a zero exact match (EM)
⇒ EM as the primary metric

● RAP-Gen achieves new SoTA results with
significant improvements over CodeT5
⇒ Retrieved fix patterns provide helpful
signals to guide APR

10

RQ4: Analysis of Hybrid Patch Retriever

● Hybrid retriever is able to balance both
lexical and semantic matching

Which retriever is the best for RAP-Gen? Can our retriever retrieve lexically and
semantically relevant patches?

● Randomly retrieving a bug-fix example
for augmentation does not help

● CodeT5 is better than CodeBERT, while
our hybrid retriever is the best

11

RQ4: Analysis of Hybrid Patch Retriever

12

RQ5: Comparative Study on Defects4J

13

● RAP-Gen repairs the largest number of
bugs in both spectrum-based Fault
Localization (FL) and perfect FL settings

● It complements other existing APR
models (i.e. RewardRepair, Recoder, and
SelfAPR) by repairing 13 and 12 unique
bugs for v1.2 and v2.0, respectively

Conclusion

In this work, we

● present a novel retrieval-augmented generation framework for APR
● show that retrieved bug-fix pairs can serve as a good guiding fix pattern for APR
● comprehensively evaluate RAP-gen on 3 APR benchmarks with different types of bugs

and demonstrate its superiority over other learning-based models

In future work, we’ll

● explore more end-to-end framework to connect retriever and generator like RAG
● explore the use of larger code LLMs for APR tasks

14

Q&A

15

