

VD-BERT: A Unified Vision and Dialog Transformer with BERT

Yue Wang¹, Shafiq Joty², Michael R. Lyu¹, Irwin King¹, Caiming Xiong², Steven C.H. Hoi²

1. The Chinese University of Hong Kong 2. Salesforce Research

Code & Models: https://github.com/salesforce/VD-BERT

(Das et al., 2017)

(Das et al., 2017)

Visual Chatbot Caption: a man talking to a giraffe in an enclosure

(Das et al., 2017)

(Das et al., 2017)

EMNLP 2020, VD-BERT: A Unified Vision and Dialog Transformer with BERT

Visual Dialog (VisDial)

Task Definition

Input:

- An Image I
- Dialog history
 - $H_t = \{C, (Q_1, A_1), \dots, (Q_{t-1}, A_{t-1})\}$
- A follow-up question Q_t

Predict an answer \hat{A}_t

• By ranking 100 candidates $\{\hat{A}_t^1, \hat{A}_t^2, \dots, \hat{A}_t^{100}\}$

C : a man talking to a giraffe in an enclosure Q_1 : how many people are there? A_1 : 1 Q_2 : is it a male of female? A_2 : Male Q_3 : what is he doing? A_3 : looking at the giraffe

 Q_t : what color is the giraffe?

 \hat{A}_{t} : brown and tan

Visual Dialog is Challenging

- ✤ Reasoning not only on the image but also multi-rounds of dialog
- Primary method: attention mechanisms
 - V: vision, H: dialog history, Q: question, A: answer

Visual Dialog is Challenging

- ✤ Reasoning not only on the image but also multi-rounds of dialog
- Primary method: attention mechanisms
 - V: vision, H: dialog history, Q: question, A: answer

Decoding: Discriminative vs. Generative

Decoding: Discriminative vs. Generative

EMNLP 2020, VD-BERT: A Unified Vision and Dialog Transformer with BERT

Contributions

- ✤ Unified Vision and Dialog Transformer with BERT (VD-BERT)
 - Employ self-attention to capture intricate vision-dialog interactions in a <u>unified</u> manner
 - Support both discriminative and generative settings seamlessly through a <u>unified</u> architecture
 - Extend BERT-like pretraining to achieve effective vision and dialog fusion
- Our proposed solution achieves new state-of-the-art results on the VisDial benchmark

Overview of VD-BERT

Encoding Image

- ✤ Visual feature
 - Use Faster R-CNN to detect k objects
 - $O_{\mathrm{I}} = \{o_1, \dots, o_k\}$
 - Each o_i is Region-of-Interest feature
- Position feature
 - Let (x₁, y₁) and (x₂, y₂) be the bottomleft and top-right corners of an object

$$p_{i} = \left(\frac{x_{1}}{W}, \frac{y_{1}}{H}, \frac{x_{2}}{W}, \frac{y_{2}}{H}, \frac{(x_{2}-x_{1})(y_{2}-y_{1})}{WH}\right)$$

$$\downarrow$$
Relative area

Encoding Language

- Encode dialog structure
 - [EOT]: end of dialog turn

- ✤ Language feature (BERT)
 - WordPiece tokenization
 - Sinusoidal position embedding

Encoding Language

- Encode dialog structure
 - [EOT]: end of dialog turn

- ✤ Language feature (BERT)
 - WordPiece tokenization
 - Sinusoidal position embedding

Proposed Solution Separate vision and language modalities **Combine Image and Text** $\mathbf{x} = ([CLS], o_1, ..., o_k, [SEP], C, [EOT], Q_1A_1, [EOT], ..., Q_t\hat{A}_t, [SEP])$ Segment Text Image Position p_0 p_1 $p_{|x|}$ p_k p_{k+1} [CLS] [SEP] [EOT] **[EOT** [SEP] Q_1A_1 Q_2A_2 $Q_t A_t$ *0*₁ Input O_k Dialog History ¹ Follow-up Question Q₁: how many people are there? Q_t : "what color is the giraffe?" A₁: 1 Q_2 : is it a male of female? A₂: Male Answer Q₃: what is he doing? \hat{A}_{t} : "brown and tan" A₃: looking at the giraffe C: a man talking to a giraffe in an enclosure Early fusion of

answer candidate 16

EMNLP 2020, VD-BERT: A Unified Vision and Dialog Transformer with BERT

Single-stream Transformer Encoder

Visually Grounded Training Objectives

- Masked Language Modeling (MLM)
 - Predict masked tokens based on the image and other tokens

$$\mathcal{L}_{MLM} = -E_{(I,\mathbf{w})\sim D} \log P(w_m | \mathbf{w}_{\backslash m}, I)$$

- Next Sentence Prediction (NSP)
 - Determine whether the appended \hat{A}_t is correct or not $\mathcal{L}_{NSP} = -E_{(I,\mathbf{w})\sim D} \log P(y|S(I,\mathbf{w}))$

Vision and dialog fusion

Discriminative and Generative Settings

- Discriminative Setting
 - Bidirectional masks
 - Employ NSP head to predict scores for each \hat{A}_t
- ✤ Generative Setting
 - Seq2seq masks
 - Perform MLM recursively to generate \hat{A}_t

Self-attention Masks

Fine-tuning with Rank Optimization

- Dense annotations
 - Assign a continuous relevance score $s_i \in [0,1]$ to each \hat{A}_t^i

 Q_t : what color is the giraffe?

EMNLP 2020, VD-BERT: A Unified Vision and Dialog Transformer with BERT

Fine-tuning with Rank Optimization

- Dense annotations
 - Assign a continuous relevance score $s_i \in [0,1]$ to each \hat{A}_t^i

 Q_t : what color is the giraffe?

EMNLP 2020, VD-BERT: A Unified Vision and Dialog Transformer with BERT

Experimental Setup

- ✤ VisDial Dataset
 - Image statistics of VisDial v0.9 and v1.0
 - Each image has 1 caption and 10 QA pairs

✤ Metric

Sparse evaluation (only one correct)

Mean Reciprocal Rank (MRR)

Experimental Setup

- VisDial Dataset
 - Image statistics of VisDial v0.9 and v1.0
 - Each image has 1 caption and 10 QA pairs

✤ Metric

- Sparse evaluation (only one correct)
 - Mean Reciprocal Rank (MRR)
 - Recall@K (K ∈ {1, 5, 10})
 - Mean Rank
- Dense evaluation (relevance score)
 - NDCG

Main focus!

Full Comparison on VisDial v1.0

Observations

 New state of the art for both singlemodel and ensemble settings

Leaderboard:<u>https://evalai.cloudcv.org/web/challeng</u>es/challenge-page/161/leaderboard/483

EMNLP 2020, VD-BERT: A Unified Vision and Dialog Transformer with BERT

	Model	NDCG↑	MRR ↑	R@ 1↑	R@5↑	R@10↑	Mean \downarrow
	NMN	58.10	58.80	44.15	76.88	86.88	4.81
	CorefNMN	54.70	61.50	47.55	78.10	88.80	4.40
	GNN	52.82	61.37	47.33	77.98	87.83	4.57
	FGA	52.10	63.70	49.58	80.97	88.55	4.51
	DVAN	54.70	62.58	48.90	79.35	89.03	4.36
	RvA	55.59	63.03	49.03	80.40	89.83	4.18
llts	DualVD	56.32	63.23	49.25	80.23	89.70	4.11
esu	HACAN	57.17	64.22	50.88	80.63	89.45	4.20
J R	Synergistic	57.32	62.20	47.90	80.43	89.95	4.17
لي آلي	Synergistic [†]	57.88	63.42	49.30	80.77	<u>90.68</u>	3.97
blis	DAN	57.59	63.20	49.63	79.75	89.35	4.30
Pu	\mathbf{DAN}^\dagger	59.36	<u>64.92</u>	51.28	<u>81.60</u>	90.88	<u>3.92</u>
	$ReDAN^{\dagger}$	64.47	53.73	42.45	64.68	75.68	6.64
	CAG	56.64	63.49	49.85	80.63	90.15	4.11
	Square [†]	60.16	61.26	47.15	78.73	88.48	4.46
	MCA*	72.47	37.68	20.67	56.67	72.12	8.89
	MReal-BDAI ^{†*}	74.02	52.62	40.03	68.85	79.15	6.76
	P1P2 [†] *	<u>74.91</u>	49.13	36.68	62.98	78.55	7.03
((LF	45.31	55.42	40.95	72.45	82.83	5.95
	HRE	45.46	54.16	39.93	70.45	81.50	6.41
lts	MN	47.50	55.49	40.98	72.30	83.30	5.92
esu	MN-Att	49.58	56.90	42.42	74.00	84.35	5.59
d R	LF-Att	49.76	57.07	42.08	74.82	85.05	5.41
) ar	MS ConvAI	55.35	63.27	49.53	80.40	89.60	4.15
srb	$UET-VNU^{\dagger}$	57.40	59.50	45.50	76.33	85.82	5.34
ade	MVAN	59.37	64.84	<u>51.45</u>	81.12	90.65	3.97
Le	${ m SGLNs}^\dagger$	61.27	59.97	45.68	77.12	87.10	4.85
	VisDial-BERT*	74.47	50.74	37.95	64.13	80.00	6.28
	Tohoku-CV ^{†*}	74.88	52.14	38.93	66.60	80.65	6.53
~	VD-BERT	59.96	65.44	51.63	82.23	<u>90.68</u>	3.90
٦ð	VD-BERT*	74.54	46.72	33.15	61.58	77.15	7.18
<u> </u>	VD-BERT ^{†*}	75.35	51.17	38.90	62.82	77.98	6.69

"†" denotes ensemble model

"*" denotes dense annotation fine-tuning

Full Comparison on VisDial v1.0

Observations

- New state of the art for both singlemodel and ensemble settings
- Inconsistency between NDCG and other metrics

Leaderboard: https://evalai.cloudcv.org/web/	<u>challen</u> g
es/challenge-page/161/leaderboard/483	_

EMNLP 2020, VD-BERT: A Unified Vision and Dialog Transformer with BERT

	Model	NDCG↑	MRR ↑	R@ 1↑	R@5↑	R@10↑	Mean ↓
(´ NMN	58.10	58.80	44.15	76.88	86.88	4.81
	CorefNMN	54.70	61.50	47.55	78.10	88.80	4.40
	GNN	52.82	61.37	47.33	77.98	87.83	4.57
	FGA	52.10	63.70	49.58	80.97	88.55	4.51
	DVAN	54.70	62.58	48.90	79.35	89.03	4.36
	RvA	55.59	63.03	49.03	80.40	89.83	4.18
lts	DualVD	56.32	63.23	49.25	80.23	89.70	4.11
esu	HACAN	57.17	64.22	50.88	80.63	89.45	4.20
μ μ	Synergistic	57.32	62.20	47.90	80.43	89.95	4.17
ر آلاً الا	Synergistic [†]	57.88	63.42	49.30	80.77	<u>90.68</u>	3.97
blis	DAN	57.59	63.20	49.63	79.75	89.35	4.30
Pu	DAN^\dagger	59.36	<u>64.92</u>	51.28	<u>81.60</u>	90.88	<u>3.92</u>
	$ReDAN^{\dagger}$	64.47	53.73	42.45	64.68	75.68	6.64
	CAG	56.64	63.49	49.85	80.63	90.15	4.11
	Square [†]	60.16	61.26	47.15	78.73	88.48	4.46
	MCA*	72.47	37.68	20.67	56.67	72.12	8.89
	MReal-BDAI ^{†*}	74.02	52.62	40.03	68.85	79.15	6.76
	P1_P2 [†] *	<u>74.91</u>	49.13	36.68	62.98	78.55	7.03
ſ	ĹF	45.31	55.42	40.95	72.45	82.83	5.95
	HRE	45.46	54.16	39.93	70.45	81.50	6.41
lts	MN	47.50	55.49	40.98	72.30	83.30	5.92
esu	MN-Att	49.58	56.90	42.42	74.00	84.35	5.59
d R	LF-Att	49.76	57.07	42.08	74.82	85.05	5.41
) Ja	MS ConvAI	55.35	63.27	49.53	80.40	89.60	4.15
srb	$UET-VNU^{\dagger}$	57.40	59.50	45.50	76.33	85.82	5.34
ade	MVAN	59.37	64.84	<u>51.45</u>	81.12	90.65	3.97
Le	${ m SGLNs}^\dagger$	61.27	59.97	45.68	77.12	87.10	4.85
	VisDial-BERT*	74.47	50.74	37.95	64.13	80.00	6.28
	Tohoku-CV ^{†*}	74.88	52.14	38.93	66.60	80.65	6.53
<u>8</u>	VD-BERT	59.96	65.44	51.63	82.23	<u>90.68</u>	3.90
٦	VD-BERT*	74.54	46.72	33.15	61.58	77.15	7.18
- (VD-BERT ^{†*}	75.35	51.17	38.90	62.82	77.98	6.69

"†" denotes ensemble model

"*" denotes dense annotation fine-tuning

Discriminative and Generative Results on VisDial v0.9

Model	MRR ↑	R@ 1↑	R@5↑	R@10↑	Mean \downarrow				
	Discriminative/Generative								
LF	58.07/51.99	43.82/41.83	74.68/61.78	84.07/67.59	5.78/17.07				
HRE	58.46/52.37	44.67/42.29	74.50/62.18	84.22/67.92	5.72/17.07				
HREA	58.68/52.42	44.82/42.28	74.81/62.33	84.36/68.17	5.66/16.79				
MN	59.65/52.59	45.55/42.29	76.22/62.85	85.37/68.88	5.46/17.06				
HCIAE	62.22/54.67	48.48/44.35	78.75/65.28	87.59/71.55	4.81/14.23				
CoAtt	63.98/55.78	50.29/46.10	80.71/ 65.69	88.81/71.74	4.47/14.43				
RvA	66.34/55.43	52.71/45.37	<u>82.97</u> /65.27	<u>90.73</u> / 72.97	3.93/10.71				
DVAN	<u>66.67/55.94</u>	<u>53.62/46.58</u>	82.85/ <u>65.50</u>	90.72/71.25	3.93 /14.79				
VD-BERT	70.04/55.95	57.79/46.83	85.34 /65.43	92.68 / <u>72.05</u>	<u>4.04/13.18</u>				

Ablation Study

Model	NDCG↑	MRR ↑	R@ 1↑	R@5↑	R@10↑	Mean \downarrow
No history	64.70	62.93	48.70	80.42	89.73	4.30
One previous turn	63.47	65.30	51.66	82.30	90.97	3.86
Full history	63.22	67.44	54.02	83.96	92.33	3.53
\hookrightarrow only text	54.32	62.79	48.48	80.12	89.33	4.27

Training with various contexts

Longer dialog history benefits most of metrics except NDCG

Ablation Study

Model	NDCG↑	MRR ↑	R@ 1↑	R@5↑	R@10↑	Mean \downarrow
No history	64.70	62.93	48.70	80.42	89.73	4.30
One previous turn	63.47	65.30	51.66	82.30	90.97	3.86
Full history	63.22	67.44	54.02	83.96	92.33	3.53
\hookrightarrow only text	54.32	62.79	48.48	80.12	89.33	4.27

Training with various contexts

- Longer dialog history benefits most of metrics except NDCG
- Textual information dominates the VisDial task

Case Study

A double decker bus sits empty at the station

Q1: are there any people? A1: yes

Q2: are they on the bus? A2: no, the bus is empty

Q3: are there any other buses? A3: 1 other bus

Q4: are there people on bus? A4: no it's empty (GT)

Sparse and dense annotation mismatch!

Relevance Score Analysis

DAN is the model from (Kang et al., EMNLP 2019)

Interpretability

- Entity grounding ("helmet")
- Visual pronoun coreference ("he")

Conclusion

- We propose a unified VD-BERT that extends BERT for effective vision and dialog fusion
- VD-BERT achieves a new state-of-the-art result on the VisDial challenge
- Extensive experiments provide insights for future transfer learning research in visual dialog tasks

Thanks!

Yue Wang

Irwin King

Shafiq Joty

Michael R. Lyu

Caiming Xiong

Steven C.H. Hoi

Code & Models: https://github.com/salesforce/VD-BERT